A Combined Approach Effectively Enhancing Traffic Performance for HSR Protocol in Smart Grids
نویسندگان
چکیده
In this paper, we propose a very effectively filtering approach (EFA) to enhance network traffic performance for high-availability seamless redundancy (HSR) protocol in smart grids. The EFA combines a novel filtering technique for QuadBox rings (FQR) with two existing filtering techniques, including quick removing (QR) and port locking (PL), to effectively reduce redundant unicast traffic within HSR networks. The EFA filters unicast traffic for both unused terminal rings by using the PL technique and unused QuadBox rings based on the newly-proposed FQR technique. In addition, by using the QR technique, the EFA prevents the unicast frames from being duplicated and circulated in rings; the EFA thus significantly reduces redundant unicast traffic in HSR networks compared with the standard HSR protocol and existing traffic filtering techniques. The EFA also reduces control overhead compared with the filtering HSR traffic (FHT) technique. In this study, the performance of EFA was analyzed, evaluated, and compared to that of the standard HSR protocol and existing techniques, and various simulations were conducted to validate the performance analysis. The analytical and simulation results showed that for the sample networks, the proposed EFA reduced network unicast traffic by 80% compared with the standard HSR protocol and by 26–62% compared with existing techniques. The proposed EFA also reduced control overhead by up to 90% compared with the FHT, thus decreasing control overhead, freeing up network bandwidth, and improving network traffic performance.
منابع مشابه
Enhanced Effective Filtering Approach (eEFA) for Improving HSR Network Performance in Smart Grids
The effective filtering approach (EFA) is one of the most effective approaches for improving the network traffic performance of high-availability seamless redundancy (HSR) networks. However, because EFA uses port locking (PL) for detecting nondestination doubly-attached nodes with HSR protocol (DANH) rings in HSR networks, it forwards the first sent frame to all DANH rings in the network. In ad...
متن کاملFHT: A Novel Approach for Filtering High-Availability Seamless Redundancy (HSR) Traffic
High-availability seamless redundancy (HSR) is a protocol for Ethernet networks that provides duplicated frames with zero recovery time in the event of any network component’s failure. It is suited for applications that demand high availability and a very short time-outs such as substation automation systems (SAS). However, HSR generates excessive unnecessary unicast frames and spreads them thr...
متن کاملA Comparison of Techniques for Reducing Unicast Traffic in HSR Networks
This paper investigates several existing techniques for reducing high-availability seamless redundancy (HSR) unicast traffic in HSR networks for substation automation systems (SAS). HSR is a redundancy protocol for Ethernet networks that provides duplicate frames for separate physical paths with zero recovery time. This feature of HSR makes it very suited for real-time and mission-critical appl...
متن کاملDVP: A Novel High-Availability Seamless Redundancy (HSR) Protocol Traffic-Reduction Algorithm for a Substation Automation System Network
The high-availability seamless redundancy (HSR) protocol, a potential candidate for substation automation system (SAS) networks, provides duplicated frame copies of each sent frame, with zero fault-recovery time. This means that even in the case of node or link failure, the destination node will receive at least one copy of the sent frame. Consequently, there is no network operation down time. ...
متن کاملOptimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability
In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017